![]() ガスタービンの吸入質量流量の決定方法
专利摘要:
ガスタービン(1)の吸入質量流量の決定方法において、洗浄により予期される回復出力の特に信頼できる予測が可能でなければならない。そのために、タービン入口圧力(40a)、燃焼器圧力損失(40b)および/又は大気と圧縮機入口との間の圧力損失(40c)が入力特性量(40a、40b、40c)として求められる。 公开号:JP2011515620A 申请号:JP2011501199 申请日:2009-03-24 公开日:2011-05-19 发明作者:ヴェルナー、クラウス;グローセ‐ラクスツェン、ロルフ 申请人:シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft; IPC主号:F02C9-00
专利说明:
[0001] 本発明はガスタービンの吸入質量流量の決定方法に関する。本発明はまた複数の構成要素を有するガスタービンにおいてその或る一つの構成要素の浄化によりガスタービンの運転出力が回復される回復出力を自動的に予測する診断方法に関する。] 背景技術 [0002] ガスタービンにおいて運転経過中にその出力および効率が、汚れ、付着物、摩耗および腐食によって低下し、このために、発電設備の総プロセスが不利な影響を受ける。特にガスタービン入口に存在する圧縮機の空力学的部分がそれに関連する。] [0003] ガスタービンの汚れは表面への微粒子の付着によって引き起こされる。ウォーターミスト(水霧)およびオイルミスト(油霧)は埃およびエアロゾルが翼に固着することに寄与する。最もしばしば発生する汚れおよび付着物は水濡れ物質、水溶性物質および非水溶性物質から成る混合物である。ガスタービンにおいて汚れは灰付着物および未燃焼の固形浄化調合剤によって生ずることがある。かかる空気汚染物はガスタービンの流路に存在する構成要素にウロコ(鱗)のように付着し、その構成要素と反応する。また粒子の衝突および摩擦によって一般にエロージョン(浸食)と呼ばれる擦り傷が生ずる。] [0004] またガスタービンの入口に生ずる氷片が融解し、ガスタービンの流路における構成要素に衝突する。これを防止するためにいわゆる氷結防止装置が利用される。ここでは空気を加熱することによって、ガスタービンへの流入時における空気の温度が氷点以下に低下しないようにされ、これによって水が凍結しないようにされる。] [0005] 上述の老化過程によって翼の表面荒さが増大される。これは、境界面の層流が乱流に転化して流れ抵抗が大きくなるために、ガスタービンに比較的大きな摩擦損失を生じさせる。さらにガスタービンの隙間が摩耗と腐食によって増大する。その隙間を流れる作動媒体流量による損失が増大し、タービン設備の運転性能が低下する。] [0006] 老化現象の影響はガスタービンの入口、即ち、圧縮機で特に大きい。エロージョン、付着物および損傷による翼の幾何学的変化はガスタービンの出力性能低下を生じさせる。タービンの入口に生じた付着物、エロージョンおよび腐食は流入角度を変化させ、この流入角度変化は熱力学的性能に非常に大きな影響を及ぼす。老化した圧縮機は事情によっては流れ剥離を生じさせる。] [0007] 圧縮機の老化はガスタービン効率、ガスタービン出力およびガスタービン出口質量流量に不利な影響を及ぼす。タービン設備の出力低下に対抗するために定期的な圧縮機洗浄が実施される。その場合、圧縮機翼がオンラインモードおよびオフラインモードで洗浄される。オンラインモードの際、タービン設備は浄化中に継続運転され、ガスタービン負荷が僅かに低下される。オンライン洗浄は主に汚染層の形成を防止するために用いられる。通常オンライン洗浄は毎日一回完全脱塩水で実施され、3日に一回浄化剤で実施される。] [0008] これに対してオフライン洗浄においてタービン設備は停止される。その場合、タービン設備は熱応力発生を防止するために6時間にわたりターニング装置により回転しながら徐冷される。オフライン洗浄は通常1カ月に一回程度実施される。代表的なタービン設備において一般に、タービン設備が比較的長い期間にわたり浄化されなかったとき、オンライン洗浄方式では汚れをもはや除去できないのでオフライン洗浄が実施される。] [0009] オフライン洗浄はオンライン洗浄より大きな出力回復を生ぜしめる。オフライン洗浄により数%の出力回復が得られる。オンライン洗浄は僅かな出力回復を生ぜしめる。オンライン洗浄とオフライン洗浄との組合せ洗浄によって効果的な翼洗浄が達成される。定期的なオンライン洗浄は必要なオフライン洗浄間の時間間隔を拡大する。] [0010] オフライン洗浄の最良時点は通常オペレータによって純粋に経済的な運転観点に応じて、例えば低負荷時間に、決定される。これは、タービン設備の或る一つの構成要素の汚れ除去時点、例えば圧縮機の洗浄による汚れ除去時点についての決定、が経済的な観点あるいは一定した周辺条件の前提条件をもとでの経験値だけに因ることを意味する。] [0011] あるいはまたオフライン洗浄時点の決定は、オフライン洗浄により予期されるガスタービンの出力回復のその時点の予測をもとに行われる。かかる予測は通常圧縮機の汚れ度に対する特性量として用いられるガスタービンの圧縮機効率の変化に基づいて行われる。かかる予測法は例えば特許文献1あるいは非特許文献1で知られている。] [0012] しかし圧縮機効率を検出するために利用される測定データはその精度がかなり悪く、これはオフライン洗浄により予期される出力回復の正確な予測を困難にし、これに伴って、ガスタービンの運転に対するかかるオフライン洗浄の経済的最良時点の決定を困難にする。] [0013] かかる予測の精度を高めるために、統計的な不確実性が最小にされねばならない。これは例えば測定装置の改良や測定回数の増加によって可能である。しかしそのような増加は統計的誤差しか減少せず、回復出力の予測時におけるシステム的誤差も大きく減少されねばならない。これは回復出力を予測するために他の補助的特性量を取り入れることによって達成できる。ガスタービン出力を特徴づけるかかる特性量はガスタービンの吸入質量流量である。] [0014] ガスタービンの運転出力に対する特性量としての吸入質量流量は通常、高い経費、悪い測定精度および損傷危険のために直接測定されず、収支勘定をもとに間接的に決定される。直接測定には非常に高価な計測器が採用されねばならない。これは第1に計測器が非常に高い温度下にあり、第2にタービン翼で生じるかもしれない大きな連鎖損傷を考慮してセンサ破損が絶対に防止されねばならないからである。] [0015] 国際公開第2005/090764号パンフレット] 先行技術 [0016] 技術雑誌「ファウゲーベークラフトヴェルクステヒニク(VGB Kraftwerkstechnik)」第79巻、No.3に掲載のシェパース(Schepers)氏等著の論文"26MWガスタービンにおける出力回復を目指してのオンライン洗浄およびオフライン洗浄の最良実施法(Optimierung der Online-und Offline-Wasch an einer 26MW-Gasturbinen unter besonderer Berucksichtigung der Leistungssteigung"] 発明が解決しようとする課題 [0017] 本発明の課題は、洗浄により予期される出力回復の特に確実な予測を可能とする冒頭に述べた形式の吸入質量流量の決定方法を提供することにある。] 課題を解決するための手段 [0018] この課題は、吸入質量流量を決定するために本発明に基づいて、タービン入口圧力、燃焼器圧力損失および/又は大気と圧縮機入口との間の圧力損失が入力特性量として求められることによって解決される。] [0019] 本発明は、一方ではガスタービン全体のエネルギ平衡に対して、他方では燃焼器のエネルギ平衡に対して、入力量として特に運転出力、燃料質量流量および燃料発熱量が必要とされるという考えから出発している。しかしそれらの値は比較的検出し難く、非常に大きな誤差を伴っている。ガスタービンが蒸気タービンと共に単軸上で運転されるガス・蒸気複合タービン設備の場合、そのガスタービンの出力は個別値としては高い経費をかけねば検出できず、また精確に検出できない。これはガス・蒸気複合タービン設備が総出力でのみ検出可能だからである。そこで吸入質量流量を決定するために、タービン入口圧力、燃焼器圧力損失および/又は大気と圧縮機入口との間の圧力損失が入力特性量として求められる。] [0020] タービン入口圧力は、ストドラ(Stodola)法による量・圧力方程式によって吸入質量流量の値に変換され、他方で、燃焼器圧力損失ないしは大気と圧縮機入口との間の圧力損失から、吸入質量流量の決定に関与されるそれぞれの抵抗係数が求められる。このようなエネルギ平衡の解析を必要としない吸入質量流量の検出はほんの僅かな統計的誤差しか含まず、従って、或る一つの構成要素の洗浄によりガスタービンの運転出力が増大される回復出力のより正確な予測を可能とする。] [0021] 吸入質量流量の決定時における統計的誤差を一層小さくするために、吸入質量流量を決定するために複数の入力特性量からそれぞれの吸入質量流量暫定値が求められると有利であり、その各暫定値に対してそれぞれの他の暫定値との交差比較(Querabgleich)によってそれぞれ有効確認値が求められる。かかる交差比較は例えばVDI(ドイツ技術者協会規格)2048に応じて行われる。これは主にガウス(Gaus)による比較原理に基づいている。その基本的考えは、解析にとって必要な最少の測定量を利用するだけでなく、入手可能な全測定量をその分散量および共分散量を含めて検出することにある。これは本発明方法においてそれぞれの吸入質量流量暫定値を求めるために入手可能な全入力特性量が利用されることを意味する。] [0022] 常に同じ物理的吸入質量流量が問題となるので、真の入力特性量は発生した全暫定値がすべて同じであるようでなければならない。この仮定をもとにガウス法によって測定量実際値に対する矛盾のない評価値および吸入質量流量に対する有効確認値を得る。このようにして発生された吸入質量流量の有効確認値が求められ、これによって、ガスタービンの運転出力を決定するための特に統計的誤差の少ない特性量を形成する。] [0023] ガスタービンの大きな運転出力を得るために必要なオフライン洗浄の特に安価な経費での時点選定は、かかるオフライン洗浄による出力回復の極めて正確な予測によって達成される。換言すれば、その時点でのオフライン洗浄がガスタービンの停止による生産休止に関して経済的に割に合うか否かを確定するためには、いつでもオフライン洗浄により予期される出力回復がどの程度であるかをできるだけ正確に認識されねばならない。従って、吸入質量流量の数値によりかかる予測を行う複数の構成要素を含むガスタービンの診断方法において、上述の吸入質量流量の決定方法が利用されると有利である。] [0024] ガスタービンにおいて圧縮機が流れ媒体路において例えば燃焼器のような他のすべての構造部品に対して前置されている。それに応じて圧縮機は流入する埃および汚れ粒子のような環境汚染物に最も曝される構造部品である。従って、圧縮機が最大の汚れ度を有し、その浄化が運転出力の回復に特に有利な影響を及ぼすので、特に圧縮機の洗浄を実施することが有利である。] [0025] ガスタービンの統計的誤差およびシステム的誤差を一層減少するために、ガスタービンの運転出力を決定するために吸入質量流量が唯一の特性量として利用されるべきではない。このため有利な実施態様において、補助的にガスタービンの圧縮機効率が特性量として利用される。] [0026] 入力特性量を測定する際、特にガスタービンの熱力学的パラメータが空気圧および外気温のようなその都度の環境条件に依存することが考慮されねばならない。それでも種々の時点における測定値を相互に比較するために、それぞれの特性量が基準条件で規準化されねばならない。従ってその規格として、ISO(国際標準化機構)規格条件(温度15℃、圧力1,013バール、空気湿度60%)が提唱されている。] [0027] ガスタービンの或る一つの構成要素の浄化による回復出力をガスタービンの計算された瞬間的運転出力から予測するために、浄化されたガスタービンの運転出力に対する基準値が必要とされる。ガスタービンの運転出力はその汚れ状態を除外すると汚れと無関係なエロージョンにも依存し、従って、ガスタービンの運転老化にほぼ依存する。かかる基準値を得るために、回復出力を予測する際に同一構造および/又は類似構造のガスタービンの特性量が比較量として利用されると有利である。これによって、特にガスタービンの浄化後における運転出力が特に良好に予測され、全体としてガスタービンの浄化による回復出力の精確な予測が達成できる。] [0028] ガスタービンの或る一つの構成要素の浄化による回復出力が、直ちに行われる浄化時に求められねばならないだけでなく、浄化の長期計画を可能とするために将来の時間帯についてもしばしば求められねばならない。そのために有利な実施態様において、それぞれの特性量の時間的変化の予測が行われる。かかる予測は種々の時点での入力量あるいは測定量の複数回の評価によって可能である。] [0029] ガスタービンのオフライン洗浄時点の決定が例えば低負荷運転のような純粋に経済的観点のもとで行われるだけでなく、ガスタービンの将来における運転出力の精確な予測のもとで行われることによって、ガスタービンの特に経済的に良好な運転が可能となる。そのために、求められた回復出力の値に依存して経済的総経費と比較して、汚れを除去するためにガスタービンが一時的に停止されるか否かについて決定し、場合によってはその一時的停止に対する最良時点を求めるのが好ましい。オフライン洗浄によって得られる回復出力の精確な予測によって、かかるオフライン洗浄の時点決定を非常に精確な分析をもとに行うことができ、オフライン洗浄の経費と効果が精確に比較できる。] [0030] この方法は、複数の構成要素を有するガスタービンおよび制御装置とを備え、この制御装置のデータ入力部が入力特性量を求めるためにガスタービンに配置された複数のセンサに接続され、この制御装置が予測モジュールを有しているガスタービン設備において有利に利用される。] [0031] 有利な実施態様において、予測モジュールに同一構造および/又は類似構造のガスタービンの比較量を有するデータバンクのデータが読み込みできる。そのために、その予測モジュールはかかる読込みを可能とするオープンアーキテクチャを有していなければならない。これは例えば移動データ媒体で行われるか、あるいはデータバンクへの永続的データ接続を介して行われ、即ち、データバンクが制御装置の内部における書込み可能な記憶装置に貯えられるか、長距離回線を介してガスタービンの制御装置に接続された外部サーバーに記憶される。] [0032] これは同一構造および/又は類似構造のガスタービンのデータ間の比較を可能とし、これにより特に大きな経験ベースとの照合が可能となり、これによって統計的誤差がより小さくなる。その逆にそのガスタービンで得られたデータは、これがデータバンクに供給され記憶されることによって、データバンクを拡大するためにも利用できる。] [0033] 予測モジュールが有利にガスタービンにおいて本発明方法を実施するために適用される。] 発明の効果 [0034] 本発明により得られる利点は、タービン入口圧力、燃焼器圧力損失および/又は大気と圧縮機入口との間の圧力損失によりガスタービンの吸入質量流量を決定することによって、ガスタービン特にその圧縮機の汚れ度を非常に精確に分析することができることにある。これによって、ガスタービンの運転状態と経済的状態とに適合したオフライン洗浄の将来計画が可能となり、これにより、ガスタービンの稼動期間中における特に高い効率が達成される。またここに記載された方法は、あらゆる燃料データの知識を必要とせず且つ高い不確実性を伴うエネルギ平衡の解析を必要とせずに吸入質量流量を決定することを可能とする。ちなみに、ガスタービンと蒸気タービンが単軸上に配置された単軸形ガス・蒸気複合タービン設備において、この方法によってはじめてガスタービンの運転出力に関して吸入質量流量を考慮することが可能となる。] [0035] 以下図を参照して本発明の実施例を詳細に説明する。] 図面の簡単な説明 [0036] ガスタービンの縦断面図。 ガスタービンの運転出力の時間的経過を表した線図。 圧縮機洗浄による回復出力の診断方法を表した概略図。] [0037] 各図において同一部分には同一符号が付されている。] [0038] 図1におけるガスタービン1は、燃焼用空気の圧縮機2、燃焼器4並びに圧縮機2と発電機や作業機械(図示せず)とを駆動するためのタービン6を有している。そのためにタービン6および圧縮機2はタービンロータとも呼ばれる共通のタービン軸8上に配置されている。このタービン軸8はその中心軸線9を中心に回転可能に支持され、発電機ないし作業機械が結合されている。] 図1 [0039] 燃焼器4は液体燃料あるいは気体燃料を燃焼するための複数の個別バーナ10が装備され、これらのバーナ10はタービン軸8の周りに円環状に配置されている。] [0040] タービン6はタービン軸8に取り付けられた多数の動翼12を有している。これらの動翼12はタービン軸8に輪状に配置され、これによって、複数の動翼列を形成している。またタービン6は多数の静翼14を有し、これらの静翼14も同様に輪状に配置されて静翼列を形成し、タービン6の内部車室に取り付けられている。その動翼12はタービン6を貫流する作動媒体(燃焼ガス)Mの衝撃伝達によってタービン軸8を駆動するために使われる。これに対して静翼14は、作動媒体Mの流れ方向に連続する2つの動翼列あるいは動翼輪の間において、作動媒体Mの流れを案内するために使われる。] [0041] 圧縮機2は空気入口16のすぐ次に在るタービンの構造部品である。そのため圧縮機2は汚れを取り込み、その結果、タービン1の最もひどく汚される部分である。従ってガスタービン1の運転出力低下を防止するために、圧縮機2は定期的に浄化されねばならない。それは非常に頻繁に例えばいわゆるガスタービンの停止を必要としないオンライン洗浄で毎日一回行われる。頑固な汚れを除去するためには、より大きな時間間隔で、タービンを停止してオフライン洗浄が実施されねばならない。] [0042] ガスタービン1は制御装置18を有し、この制御装置18はガスタービン1の内部に配置された種々のセンサ22にデータ線20を介して接続されている。その制御装置18は最適なオフライン洗浄時点を決定するために予測モジュール24を有し、この予測モジュール24はセンサ22で得られた入力特性量を処理し、そのデータをもとにガスタービンの汚れ度および実施されるオフライン洗浄により期待される回復運転出力を求める。その予測の質を向上するために、予測モジュールに同一構造および/又は類似構造のガスタービンの比較データが読込みできる。そのために制御装置はそのような比較データを有するデータバンク26にデータ線20を介して接続されている。そのデータバンク26は詳細に図示されていない外部データバンクサーバーに存在することができる。その代わりに比較データは永続的データ接続なしに移動データ媒体を介して読み込むこともできる。] [0043] 図2は代表的なガスタービン1の運転出力の時間的経過を線図で表している。線L1はガスタービン1の運転開始時点30における運転出力を示している。L2はガスタービン1の理論的最大出力と時間との関係を線図で表し、その出力低下は老化および復元不能な汚染だけで発生される。] 図2 [0044] 線L3はガスタービンの運転出力への復元可能な汚染の追加的影響を表している。その線区分Iにガスタービンの運転出力への定期的オンライン洗浄の効果が示されている。このオンライン洗浄は規則的な時間間隔の固定時点32に実施され例えば毎日一回実施される。これは比較的僅かな出力回復しかもたらせないが、この出力回復は頻繁なオンライン洗浄にわたり累積してガスタービン1の出力維持にかなり貢献する。] [0045] より大きな時間間隔において時点34でオフライン洗浄が実施される。このオフライン洗浄は非常に大きな出力回復をもたらすが、そのためにガスタービン1が停止されねばならないので非常に高い経費を必要とし、またかなりの運転経費が生ずる。従ってそのオフライン洗浄時点34は将来を予測して選定されねばならず、これは一方では例えば電力価格あるいは燃料価格のような経済的基準をもとに行われ、他方ではガスタービンの運転変数をもとに行われる。オフライン洗浄時点34の最良決定に対して、特にオフライン洗浄による推定回復出力が分っていなければならない。] [0046] 図3は圧縮機の洗浄によりガスタービン1の運転出力が回復される回復出力を算定する方法の過程を概略的に示している。そのためにまず入力特性量として、タービン入口圧力40a、燃焼器圧力損失40bおよび大気と圧縮機入口との間の圧力損失40cが測定される。ストドラ(Stodola)法による量・圧力方程式によって、タービン入口圧力40aから吸入質量流量暫定値42aが算定される。また燃焼器における圧力損失40bおよび大気と圧縮機入口との間の圧力損失40cが一定の抵抗係数による計算によって吸入質量流量暫定値42bないし42cに変換される。] 図3 [0047] その種々の計算がまず種々の吸入質量流量暫定値42a、42b、42cを提供する。全ての吸入質量流量が同じであるという副条件によって、VDI2048に応じてデータ有効確認が実施される。これは規定された不確定率をもとにこれらの測定値を、これらの吸入質量流量暫定値が実質的に同じであるように補正する。このような補正された複数の入力特性量から、一方で吸入質量流量の有効確認された値44が生じ、他方では有効確認された入力特性量が圧縮機効率50の計算に対する基礎として利用される。] [0048] 次いで平均化によって所定時点52に対する比較的精確な吸入質量流量値48および圧縮機効率50が得られる。これらの測定値が複数の時点52で検出され記憶される。種々の環境条件のもとに検出された値を相互に関連づけるために、その検出された測定値がそれぞれISO規格条件(温度15℃、圧力1,013バール、空気湿度60%)で数学関数例えば多項式により計算される。そのようにして得られた吸入質量流量の規格化された値54および圧縮機効率の規格化された値56から回帰分析によって吸入質量流量および圧縮機効率の時間的経過54、56が予測できる。回帰の十分な質を保証するために、10個以上の測定点52がなければならない。] [0049] 吸入質量流量および圧縮機効率の両方の値に対して、直近のオフライン洗浄後における値と現在時点の値との差62が形成される。続いてそれらの両方の答がそれぞれ或る係数で乗算される。これらの係数はグループ解析(Flottenanalyse)の答であり、即ち、同一構造および/又は類似構造のガスタービン1との比較の答である。その相応したデータはデータバンクから供給される。その答値にそれぞれ統計的不確実性を基礎として蓋然性レベルが割り当てられる。] [0050] 続いてその両方の答62はガスタービン特有の特性量64によってガスタービン出力に変換される。続いて、そのようにして得られた圧縮機の浄化による回復出力の予測が出力端68に導かれる。] 実施例 [0051] これによって、圧縮機の浄化による回復出力を精確に予測するために、ガスタービンの吸入質量流量が考慮され、その場合、吸入質量流量を決定するために、エネルギ平衡が解析されず、ガスタービン出力および燃料についての情報が必要とされず、特にその発熱量および質量流量についての情報が必要とされない。これによって比較的小さな不確実性を有する予測によって、タービンオペレータがオフライン洗浄時点34を運転に固有なデータをもとに精確に決定できる。これによって全体としてガスタービンの経済的運転が可能となる。] [0052] 1ガスタービン 2圧縮機 18制御装置 22センサ 24予測モジュール 26データバンク 40aタービン入口圧力 40b燃焼器圧力損失 40c大気と圧縮機入口との間の圧力損失 42a吸入質量流量暫定値 42b 吸入質量流量暫定値 42c 吸入質量流量暫定値 44 有効確認値 48吸入質量流量特性量 50圧縮機効率 64比較量としてのガスタービン特有の特性値]
权利要求:
請求項1 タービン入口圧力(40a)、燃焼器圧力損失(40b)および/又は大気と圧縮機入口との間の圧力損失(40c)が入力特性量(40a、40b、40c)として求められることを特徴とするガスタービン(1)の吸入質量流量(48)の決定方法。 請求項2 吸入質量流量(48)を決定するために複数の入力特性量(40a、40b、40c)からそれぞれの吸入質量流量暫定値(42a、42b、42c)が求められ、それらの各暫定値(42a、42b、42c)に対してそれぞれ他の暫定値との交差比較によって有効確認値(44)が求められ、それらの有効確認値(44)の平均値としてガスタービン(1)の吸入質量流量(48)に対する特性量が得られることを特徴とする請求項1に記載の方法。 請求項3 吸入質量流量(48)の決定が燃料発熱量および/又は燃料質量流量についての情報なしに行われることを特徴とする請求項1又は2に記載の方法。 請求項4 複数の構成要素を有するガスタービン(1)の或る一つの構成要素の洗浄によりガスタービン(1)の運転出力が回復される回復出力を自動的に予測するガスタービン(1)の診断方法であって、回復出力の予測時にガスタービン(1)の吸入質量流量(48)が特性量として利用され、その吸入質量流量(48)が請求項1ないし3のいずれか1つに記載の方法に応じて決定されることを特徴とするガスタービン(1)の診断方法。 請求項5 圧縮機(2)の洗浄による回復出力が予測されることを特徴とする請求項4に記載の方法。 請求項6 回復出力の予測時にガスタービン(1)の圧縮機効率(50)が特性量として利用されることを特徴とする請求項4又は5に記載の方法。 請求項7 それぞれの特性量が複数の基準条件で規準化されることを特徴とする請求項4ないし6のいずれか1つに記載の方法。 請求項8 回復出力の予測時に同一構造および/又は類似構造のガスタービン(64)の特性量が比較量として利用されることを特徴とする請求項4ないし7のいずれか1つに記載の方法。 請求項9 それぞれの特性量の時間的変化の予測(58、60)が行われることを特徴とする請求項4ないし8のいずれか1つに記載の方法。 請求項10 算定された回復出力の値に関係して経済的総経費と比較して、汚れを除去するためにガスタービン(1)が一時的に停止されるか否かが決定され、場合によってはその一時停止に対する最良時点(34)が求められることを特徴とする請求項4ないし9のいずれか1つに記載の方法。 請求項11 複数の構成要素を有するガスタービン(1)および制御装置(18)を備え、該制御装置(18)のデータ入力部が入力特性量(40a、40b、40c)を求めるためにガスタービン(1)に配置された複数のセンサ(22)に接続され、該制御装置(18)が請求項1ないし10のいずれか1つに記載の方法を実施するために設計された予測モジュール(24)を有していることを特徴とするガスタービン設備。 請求項12 同一構造および/又は類似構造のガスタービン(64)の比較量についてのデータバンク(26)のデータが予測モジュールに読み込まれることを特徴とする請求項11に記載のガスタービン設備。 請求項13 予測モジュール(24)が請求項1ないし10のいずれか1つに記載の方法を実施するために設計されていることを特徴とするガスタービン設備に利用される予測モジュール。
类似技术:
公开号 | 公开日 | 专利标题 EP3051075B1|2019-07-24|Wash timing based on turbine operating parameters Tahan et al.2017|Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review JP5881814B2|2016-03-09|エンジン及びその部品の残り耐用寿命を予測する方法 JP6010618B2|2016-10-19|Apparatus and method for gas turbine life prediction and optimization Ribrant2006|Reliability performance and maintenance-a survey of failures in wind power systems US7869928B2|2011-01-11|Estimating health parameters or symptoms of a degrading system US7062370B2|2006-06-13|Model-based detection, diagnosis of turbine engine faults US8818683B2|2014-08-26|Method and apparatus for operating a gas turbine engine US7787996B2|2010-08-31|Determining optimal turbine operating temperature based on creep rate data and predicted revenue data US7824147B2|2010-11-02|Airfoil prognosis for turbine engines Carazas et al.2009|Availability Analysis of Gas Turbines Used in Power Plants. US7762153B2|2010-07-27|Method and systems for measuring blade deformation in turbines Meher-Homji et al.1998|Gas Turbine Blade Failures-Causes, Avoidance, And Troubleshooting. US8116990B2|2012-02-14|Method and system for real-time prognosis analysis and usage based residual life assessment of turbine engine components and display US20130024179A1|2013-01-24|Model-based approach for personalized equipment degradation forecasting US10458342B2|2019-10-29|System and method for controlling operation of a gas turbine based power plant KR20100074028A|2010-07-01|회전자 블레이드 상태를 모니터하는 시스템 및 방법 EP2126649B1|2012-09-19|Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data JP3614751B2|2005-01-26|コンバインド発電プラントの熱効率診断方法および装置 EP2523150A1|2012-11-14|System and Method for Optimizing Plant Operations EP2392983A2|2011-12-07|Method, system and computer program product for life management of a gas turbine DE102011055474A1|2012-05-24|System und Verfahren zur hybriden Risikomodellierung von Strömungsmaschinen US20050271499A1|2005-12-08|Methods and systems for operating rotary machines US20100281843A1|2010-11-11|Multi-stage compressor fault detection and protection Ogaji et al.2002|Parameter selection for diagnosing a gas-turbine's performance-deterioration
同族专利:
公开号 | 公开日 JP4906977B2|2012-03-28| WO2009118311A1|2009-10-01| CN102099835A|2011-06-15| EP2105887A1|2009-09-30| MX2010010608A|2010-11-09| RU2517416C2|2014-05-27| US9466152B2|2016-10-11| RU2010144075A|2012-05-10| EP2257933A1|2010-12-08| EP2257933B1|2016-07-27| CN102099835B|2014-12-17| US20110247406A1|2011-10-13|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 JPH0237120A|1988-07-27|1990-02-07|Toyota Motor Corp|Controlling apparatus of two-axle-type gas turbine engine| JPH09228853A|1996-02-27|1997-09-02|Hitachi Ltd|ガスタービン燃焼器| JP2004169667A|2002-11-22|2004-06-17|Mitsubishi Heavy Ind Ltd|多段フィルタの監視装置| WO2005090764A1|2004-02-23|2005-09-29|Siemens Aktiengesellschaft|Verfahren und vorrichtung zur diagnose einer turbinenanlage|JP2015021500A|2013-07-22|2015-02-02|ゼネラル・エレクトリック・カンパニイ|ガス・タービン圧縮機の洗浄システムおよび方法|US5113691A|1989-02-26|1992-05-19|Westinghouse Electric Corp.|Turbine-medium flow monitor| US5267277A|1989-11-02|1993-11-30|Combustion Engineering, Inc.|Indicator system for advanced nuclear plant control complex| US5048285A|1990-03-26|1991-09-17|Untied Technologies Corporation|Control system for gas turbine engines providing extended engine life| RU2146012C1|1992-05-29|2000-02-27|Нэшнл Пауэр П.Л.С.|Газотурбинная установка| RU2123610C1|1992-11-09|1998-12-20|ОРМАТ, Инк.|Способ увеличения энергии, вырабатываемой системой газовой турбины| JPH06331781A|1993-05-26|1994-12-02|Toshiba Corp|プラント状態表示装置| WO1995016296A1|1993-12-09|1995-06-15|B + H Ingenieur-Software Gmbh|Verfahren zur steuerung von im verbund betriebenen elektrische und/oder thermische energie erzeugenden anlagen| DE19736384A1|1997-08-21|1999-02-25|Man Nutzfahrzeuge Ag|Verfahren zur Dosierung eines Reduktionsmittels in stickoxidhaltiges Abgas einer Brennkraftmaschine| EP0921292B1|1997-12-08|2003-09-10|ALSTOM Ltd|Verfahren zur Regelung einer Gasturbogruppe| JP4339520B2|1998-09-24|2009-10-07|シーメンスアクチエンゲゼルシヤフトSiemensAktiengesellschaft|ガスタービンにおける燃料の予熱方法| DE10001997A1|2000-01-19|2001-07-26|Alstom Power Schweiz Ag Baden|Verbund-Kraftwerk sowie Verfahren zum Betrieb eines solchen Verbund-Kraftwerkes| US6574584B2|2000-12-11|2003-06-03|General Electric Company|Method for evaluating compressor stall/surge margin requirements| US7591150B2|2001-05-04|2009-09-22|Battelle Energy Alliance, Llc|Apparatus for the liquefaction of natural gas and methods relating to same| US6976351B2|2003-04-04|2005-12-20|General Electric Company|Methods and apparatus for monitoring gas turbine combustion dynamics| US7231305B2|2003-08-07|2007-06-12|Schlumberger Technology Corporation|Flow rate determination| CA2437264C|2003-08-12|2013-12-03|Brian Wilson Varney|Heat exchanger optimization process and apparatus| US7021126B1|2004-09-15|2006-04-04|General Electric Company|Methods for low-cost estimation of steam turbine performance| EP2100031B1|2007-01-10|2012-04-04|Shell Internationale Research Maatschappij B.V.|Method and device to measure, test and/or monitor turbine performance|US8437941B2|2009-05-08|2013-05-07|Gas Turbine Efficiency Sweden Ab|Automated tuning of gas turbine combustion systems| US9267443B2|2009-05-08|2016-02-23|Gas Turbine Efficiency Sweden Ab|Automated tuning of gas turbine combustion systems| US9354618B2|2009-05-08|2016-05-31|Gas Turbine Efficiency Sweden Ab|Automated tuning of multiple fuel gas turbine combustion systems| US9671797B2|2009-05-08|2017-06-06|Gas Turbine Efficiency Sweden Ab|Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications| US8869603B2|2012-02-29|2014-10-28|United Technologies Corporation|Debris detection in turbomachinery and gas turbine engines| ITCO20120008A1|2012-03-01|2013-09-02|Nuovo Pignone Srl|Metodo e sistema per monitorare la condizione di un gruppo di impianti| EP2772742A1|2013-02-27|2014-09-03|Siemens Aktiengesellschaft|Leistungsbestimmungsverfahren und Turbomaschine| EP3091202B1|2015-05-07|2019-04-03|Ansaldo Energia IP UK Limited|Method for counteracting draft through an arrangement including a gas turbine during a stop| US20170074173A1|2015-09-11|2017-03-16|United Technologies Corporation|Control system and method of controlling a variable area gas turbine engine|
法律状态:
2011-12-05| TRDD| Decision of grant or rejection written| 2011-12-14| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111213 | 2011-12-15| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 | 2012-01-19| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120110 | 2012-01-20| R150| Certificate of patent or registration of utility model|Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2012-01-20| FPAY| Renewal fee payment (event date is renewal date of database)|Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 | 2015-01-06| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2016-01-12| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2017-01-20| LAPS| Cancellation because of no payment of annual fees|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|